Poker Project - Team 47: Training a Counterfactual Regret Minimisation (CFR)
Agent using a Deep-Q Network (DQN)

AUYOK Sean, CAI Jiaxiu, CHIK Cheng Yao, Joyce YEO Shuhui, ZHUANG Yihui
National University of Singapore
sean.auyok,e0201975,chikchengyao,joyceyeo,yihui @u.nus.edu

1 Introduction

In the quest to understand the human mind, scientists have
delved into designing Artificial Intelligence (AI) agents in
more structured environments like games. Al agents have
long established their dominance in games, perhaps most fa-
mously in chess with IBM DeepBlue’s win over world cham-
pion Garry Kasparov in 1996. The capabilities of Al extend
to imperfect information games, where Al agents have beaten
top human experts.

An interesting example would be Texas Hold’em Poker, a
complex game including elements of chance and bluff. More
interestingly, it is not enough to merely win the opponent, but
also to value-bet and win by as large a margin as possible.
This paper focuses on our team’s development of a poker Al
for Heads-Up Limit Texas Hold’em played under strict time
controls.

When designing our agent, the main functionality was for
the agent to recognise strong hands to invest in. Given the
limited time for our poker agent to decide on the next ac-
tion, we employed various optimisation strategies to reduce
the game complexity. For instance, we taught our agent to
cluster poker hands together (Section 2), and play them with
similar strategies.

Upon evaluating the strength of a hand, our agent has to
make the decision to fold, call or raise. We trained our agent
to make such decisions using Counterfactual Regret Minimi-
sation (CFR), which aims to play an approximate Nash Equi-
librium strategy against all opponents. Our agent traverses
the game tree based on the betting sequence observed and
the strength of its hand. At each decision node, our agent
takes each action with a certain probability, depending on
how much it regrets not having taken the action (Section 3).

Unfortunately, training a CFR agent is an extremely ineffi-
cient process. The CFR agent’s limited implementation also
makes it slow in making real-time decisions during games.
We discuss these constraints (Section 3.4) and how we cir-
cumvented them using a Deep-Q Network (DQN) (Section
4). The DQN is a neural network optimised for games like
poker, where we want to evaluate the value of making differ-
ent action. We trained our DQN against our loosely-trained
CFR agent.

We conclude by reflecting on the process of designing and
training poker agents, and how we could have better ap-
proached the training process.

2 Modelling Game State

Poker has a plethora of game states an Al agent can tap on,
such as the hand strength, pot size and player stack. Given
the complexity of poker, it would be unfeasible to use all the
game states in designing our agent. The primary heuristic in
a rational poker agent would be the hand strength, because
that is how poker’s end state is evaluated - the player with the
higher hand strength clears the pot. In this section, we focus
on how we abstracted hand strengths for our agent.

2.1 Hand Strength

There is extensive research on methods to evaluate hand
strength, such as CactusKev, TwoPlusTwo and 7-card. These
evaluators aim to assign numerical values to hands, and sub-
sequently group cards with similar strengths together. These
buckets of cards tend to have similar play styles.

Since hand strengths change across streets as community
cards are revealed, the classification key is typically a func-
tion of the current hand strength, and the potential hand
strength. We use the expected win rate of a hand, which takes
into account different combinations of the community cards
and opponent hands given a set of hole cards.

Card Isomorphism

To effectively evaluate hand strengths, it is imperative to sim-
plify the hands using abstraction techniques like card isomor-
phism. Card isomorphism exploits the fact that a card’s suit
has no inherent value. It is only useful to know the val-
ues of the hole cards and whether they are suited (have the
same suit). For example, Ad A has the exact same winning
chance as A® A&, and these hole cards would be played with
identical strategies.

Card isomorphism can reduce the number of game states in
the pre-flop street from () = 1326 sets of hole cards to 169
states (Appendix [A). Each state is identified using the value
of the cards, and a boolean indicator if they are the suited.

Percentile Bucketing
However, card isomorphism does not simplify the game com-
plexity enough. The 169 game states in the pre-flop state
will exponentially increase as we introduce player actions and
more community cards.

To further reduce the branching factor of our game tree,
we employ a second layer of abstraction, card bucketing, to

group cards of similar strengths together. For instance, two
sets of hole cards like KO Q< and Q< JO can be handled
with a similar strategy as they are offsuit highcards with a
possibility of completing a straight.

Ganzfried and Sandholm, the team behind a world-class
poker Al (Tartanian), found that using too many buckets
meant that the training algorithm could not converge suffi-
ciently fast. Eventually, they settled on a 8 — 12 — 4 — 4
bucket size for the four different streets [Ganzfried and Sand-
holm, 2012]. We simplified their model and chose to use the
same bucket size of 5 in all streets for our agent. The branch-
ing factor is large enough for our agent to differentiate hands,
but not too large that any training would be intractable.

Our heuristic for bucketing is the expected win rate of a
hand. Each bucket is effectively identified by a minimum
and maximum expected win rate. When community cards are
generated, our agent estimates the win rate of the hand using
a Monte-Carlo simulation, then assigns the hand into one of
the five buckets. Unfortunately, the number of hand combi-
nations is very large. Instead of calculating the win rates for
every hand, we only calculated the win rates of 1000 hands to
estimate the win rates needed to demarcate the buckets.

In each street (pre-flop, flop, turn, river), 1000 different
hands were generated. The hands would have two pairs of
hole cards and 0, 3, 4 or 5 community cards depending on
the street. For each of these 1000 hands, 500 Monte-Carlo
simulations were run to determine the win rate of the hands.
We used a percentile-win-rate clustering method, so the first
bucket is marked by the win rate of the hand at the 20*" per-
centile. We stored the bucket margins for our CFR agent
across different streets (Appendix [B). Each margin demar-
cates the two adjacent buckets, so there are 4 margins given 5
buckets.

Our results corroborate with the effect of imperfect infor-
mation in hand evaluation. In the pre-flop stage, most cards
had a fairly similar win rate. As the uncertainty in the com-
munity cards was resolved, the only unknown factor was the
opponent’s hand. Our agent would then be better able to dif-
ferentiate the expected win rates of different hands.

3 Counterfactual Regret Minimisation (CFR)
Agent

Our agent is primarily trained using the Counterfactual Re-
gret Minimisation (CFR) Algorithm, which is an extended
version of Regret Matching. Regret Matching is a modern
technique developed, theoretically achieving an approximate
Nash Equilibrium play for poker [Martin Zinkevich and Pic-
cione, 2007]].

3.1 Regret Matching

Regret is a concept of reward relative to an action, quantifying
how much the agent retrospectively wants to take the action
given the past observations. Regret is then proportional to
the loss observed, when the agent did not play the action.
Effectively, the agent favours actions that score the highest in
the regret heuristic. Every action x has a regret value that can
be formalised:

Regret(x) = ActionUtility(x) — CurrentUtility()

The regret of an action is how much more the agent expects
to win by always playing the action (ActionUltility) vis-a-vis
the amount the agent expects to win with its current strategy
(CurrentUtility). An action with positive regret can increase
the agent’s utility.

The strategy changes based on the updated regrets of the
actions. The regret-based agent engages in reinforcement
learning to update its beliefs about each action’s regret. Later
on, we discuss the convergence of this iterative self-play to-
wards an approximate Nash Equilibrium.

The agent plays the actions with a probability proportional
to their positive regrets. Our agent will only take actions that
have a positive regret. Actions with negative regret are not
played, as they theoretical decrease the agent’s expected util-
ity. Our agent generates a 3-tuple for the optimal probability
of playing each action (fold, call, raise). For example, one of
the tuples generated could be (0.2,0.3,0.5).

CFR - Extending Regret Matching

By its nature, poker has a large game tree with chance nodes
in the generation of community cards, making it problem-
atic to accurately define the utility at each terminal node.
The CFR technique extends Regret Matching to games where
multiple actions are sequentially taken, and there are chance
nodes between these actions. The agent is counterfactual as
it takes into account the chance of each decision being made,
and the expected utility from that node.

Poker’s game tree is extremely extensive (Appendix [C).
At each chance node, community cards are generated and
the CFR agent assigns the hand into one of 5 buckets, so
the tree branches by a factor of 5. Without bucketing, the
flop chance node would have a very large branching factor of
(438) = 17296 combinations of community cards, which is
not feasible to work with. Clearly, our bucketing strategy was
key in controlling the size of our CFR agent’s game tree.

3.2 Randomising Strategy

The exploitability of opponent behaviour is symmetric, so our
agent has to acknowledge that the opponent can similarly ex-
tract patterns from our play style. It would then be beneficial
to mask our agent’s biases.

Some researchers employ purification techniques to over-
come abstraction coarseness. For instance, the 0.1 chance
of folding in (0.1,0.3,0.6) could be due to insufficient play
rounds that the regret of folding has not been minimised. Pu-
rified poker agents prefer the higher-probability actions and
ignore actions that are unlikely to be played. In particu-
lar, Ganzfried and Sandholm found full purification to be the
most effective [Ganzfried and Sandholm, 2012]. The full pu-
rification technique lets the agent play the most-probable ac-
tion with probability 1.

However, we argue against purification because noise in
our player behaviour can disrupt the opponent’s attempt in
identifying patterns in our play style. Yakovenko et al’s
experiments found that when human players were pitched
against against fixed-style poker agents, the human players
could recognise repeated mistakes made by the agent. After
100 of 500 hands, the human players exploited the patterns
in the AI and boosted their win rates [Nikolai Yakovenko and

Fan, 2015]. In particular, the randomness in our CFR play
supports our deceit techniques of bluffing and slow-playing.
Bluffing, or raising with weak cards, leads our opponent into
over-estimating our card strength and possibly folding. Slow-
playing, or calling even when we have very strong cards,
leads our opponent into under-estimating our card strength.
The opponent stays in the game longer, increasing the even-
tual pot size.

3.3 Approximate Nash Equilibrium

Bowling et al, the pioneers of Regret Matching, assert the
convergence of CFR agents towards an approximate Nash
Equilibrium [Martin Zinkevich and Piccione, 2007]. In par-
ticular, we expect the regret values over the entire tree to be
minimised. Intuitively, the minimisation of regret occurs be-
cause regret is undesirable.

Our CFR agent has a higher probability of playing actions
with high regret. By definition, actions with high regret will
lead to an increased expected reward (CurrentUtility). The
added benefit (ActionUtility - CurrentUtility) of playing the
action is then reduced, in turn minimising the regret. Here we
observe that the minimisation of regret is also the maximisa-
tion of CurrentUtility. Eventually, the CFR agent converges
to an equilibrium where its utility is fairly constant against all
other agents.

Training our CFR agent

In training our CFR agent, we initialised all action nodes with
zero regret, so our agent starts by playing each action with
equal probability. We let two copies of our CFR agent play
against itself over 4000 rounds. The two CFR agents share the
same game tree, and collaboratively update the regret values
at each node. Sharing a game tree can significantly reduce the
number of rounds we need to find the optimal regret values.
In each round, both CFR agents explore different paths in the
tree as the betting sequences are asymmetric to both of them.

We let our CFR agent play against HonestPlayer for 100
games of 500 rounds, and we beat HonestPlayer (1459140 :
540840).

Unfortunately, even after 4000 rounds, the two CFR agents
were unable to explore the entire game tree. Some action
nodes were still at the initialised zero regret values. Evidently,
more training could have been done to overcome this limita-
tion. Nevertheless, given a sufficiently large number of train-
ing cycles, the CFR agent is expected to optimise the regret
values of all the nodes.

Unexploitability of CFR Agent
The basis of CFR agents is that they are unexploitable in the
long term, regardless of the strategy played by the opponent
[Johanson, 2007|]. The CFR agent has already taken into con-
sideration different opponent play styles (Appendix [D) since
the training stage minimised the regret across all betting se-
quences. In fact, part of the unexploitability of CFR agents
is their probabilistic play (Section 3.2). Even if an oppo-
nent knows the strategy of our CFR agent, they are not aware
which path down the game tree we took because of the dice
rolls creating probabilistic actions.

While an agent following an optimal strategy may not win
the most amount of money from their opponents, they also

cannot be exploited in the long run. In theory, a fully-trained
CFR agent playing against itself would expect to end the
game in a tie, averaging over all hand combinations and bet-
ting sequences.

3.4 Limitations of CFR Agent

In practice, it takes nearly 108 iterations [Johanson, 2007 of
training for the model to converge. Moreover, we found that
the extensive form game tree using a bucket size of 5 (Ap-
pendix [C) takes up around 5 GB of RAM during training.
These constraints make the CFR agent computationally ex-
pensive to train.

We managed to train our CFR agents for 4000 iterations.
Every 200 iterations, we tested its performance against Hon-
estPlayer over 10 games of 1000 rounds each. However, there
did not appear to be a stable increase in performance. The
4000 iterations only covered a small portion of information
sets in the game tree. Even the traversed portions did not
have minimised regret values. Nevertheless, we did observe
an overall slight performance boost in our lightly-trained CFR
agent (Figure[T), though the flux is too high to make a defini-
tive conclusion.

CFR PLAYER POT AMOUNT AFTER 10 GAMES

185000
180000
175000

£

© 170000

g

g

165000

160000

500 1000 1500 2000 2500 3000 3500 4000
number of training iterations

Figure 1: CFR performance every 200 training iterations

Besides the limitation in computational resources required
for training, the CFR agent also does not fulfill the in-game
time and space constraints given. Given our game tree, we
would need a strategy file of 100MB (without compression),
far exceeding the 50MB requirement given initially.

Furthermore, when community cards are generated at each
chance node, the CFR agent runs a Monte-Carlo simulation
to assign the hand a bucket. Running a reasonable simula-
tion size of 1000 (as used by HonestPlayer) would exceed the
100ms limit, and reducing the simulation size would compro-
mise on the accuracy. While an alternative was to store pre-
computed data in a look-up file, we could not do this because
of the file size constraints.

4 Training with a Deep-Q Network (DQN)

Given the practical limitations we experienced with our CFR
agent, we sought alternative methods that could improve the
training and decision-making efficiency. We wanted to retain
the approximate Nash Equilibrium play of our CFR agent, so
we kept to an action-based paradigm and used Q-values.
Q-values map actions to their expected reward, similar to
how our CFR agent maps actions to their regret value. How-

ever, using reinforcement learning to iteratively learn the Q-
values introduces high flux. When our agent updates the
value of an action, it also uses the new value in learning about
subsequent actions. It would be difficult for the constantly-
changing Q-values to converge.

Deep-Q Algorithm

We let our agent learn the Q-values of the actions using a
Deep-Q Network (DQN), which aims to make training more
stable. We believe that stabilising the training will let our
agent converge to an approximate Nash Equilibrium play
much faster than a CFR training. After all, a very slow con-
vergence rate was the reason we turned away from the CFR
training. The DQN has two key traits:

e Use of two neural networks. The primary training net-
work is constantly updated in every training iteration.
DOQN introduces an additional target network which oc-
casionally synchronises with the training network. Since
the Q-values in the target network are only updated oc-
casionally, they are stable enough to be used for training.

e Experience Replay. A large database (size 5000) of ob-
served data is stored in a replay buffer. Training samples
are randomly drawn from this database, mimicking su-
pervised learning with more stable training data sets.

4.1 Training Methodology

As we have mentioned earlier, poker has a multitude of game
states that can be used in training our agent. The more game
states used, the more parameters in the DQN and we expect
the training time to increase.

To minimise our training time, we initially extracted only
key features to feed into the DQN: the hole cards and commu-
nity cards, pot size, player stack and opponent stack. How-
ever, we found that after 3000 training cycles, the resulting
DQN could not outperform RandomPlayer and HonestPlayer
a third of the time.

We then attempted to feed in all the state features that
could be retrieved into the DQN (Appendix[E). After the same
amount of training (3000 cycles), the DQN agent could beat
RandomPlayer and HonestPlayer (Appendix [F). We extended
the training to 5000 cycles, and we observed the DQN agent
bankrupting both players.

Given the DQN with all features extracted, we tuned the
hyperparameters (Appendix [G). We experimented by letting
the DQN agents play against RandomPlayer and Honest-
Player as a baseline score. Agents that beat both baseline
players would be pitched against each other over 10 games.
Similar to the practical limitations in training our CFR agent,
we did not have sufficient time to fully experiment with dif-
ferent combinations of the hyperparameters.

4.2 Reinforcement Learning Process

Once we have defined the parameters, we began the formal
training for our DQN agent. The DQN agent plays against
an opponent, and learns from the opponent. We divide the
training into 3 phases, training against RandomPlayer, Hon-
estPlayer and our CFR agent in that order, with the aim of
letting the DQN agent learn from these opponents.

A basic Al agent should win against the RandomPlayer and
HonestPlayer, which are provided in the engine. Our agent
played 5000 games of 1000 rounds each with both players,
which took about 1 day to complete. Training against Ran-
domPlayer teaches to make bets on strong hands and fold on
weaker ones. HonestPlayer is the rational version of Ran-
domPlayer, keeping strong hands and folding weaker ones.
Training against HonestPlayer lets our agent recognise that
the opponents are also rational. The DQN agent learns that
the opponent will also pick the best action for themselves at
each decison node. The trained DQN agent is very compet-
itive against RandomPlayer and HonestPlayer, consistently
sweeping their stacks within 500 rounds.

Before we trained the DQN agent against our CFR agent,
we extensively compared their performance. After 100 games
of 500, the DQN agent defeated the poorly-trained CFR agent
(1704060 : 295280). This poor performance of our CFR
agent reflects its lack of training. We then trained this DQN
agent against our CFR player to produce our final agent.

5 Conclusion

Theoretically, CFR agents play an approximate Nash Equi-
librium strategy that is unexploitable. However, due to limi-
tations in the training process, our CFR agent was not able to
converge to near to a Nash Equilibrium strategy. After we re-
alised that a DQN agent was more suitable in the training pro-
cess given these constraints, we decided to change our poker
agent to be a DQN agent. However, our work with the CFR
agent did not go to waste. Since the CFR agent outperforms
RandomPlayer and HonestPlayer, the CFR agent is a good
player for the DQN agent to play against.

In hindsight, our group did not expect the CFR agent to
be faced with such training limitations. We initially believed
that with card isomorphism and good bucketing, we would be
able to optimise the training for the CFR agent. Needless to
say, we regretted using the CFR agent.

After learning more about DQN agents, we realised that
DQN agents could not only model the games better, but also
be trained faster. DQN agents are also able to more finely
differentiate the hands as no card bucketing is involved. The
neural network is able to represent the hands and betting ac-
tions efficiently in matrices. Furthermore, based on our test-
ing, a DQN could be trained to a decent level with a fewer
number of rounds.

We realised that we should have folded our efforts in CFR
early and instead went all in on DQN. That way, we could
have spent more time tuning our agent’s hyperparameters,
and putting our agent through more rounds of training. Hav-
ing more rounds of training would give us the space to exper-
iment playing against a better-trained CFR agent, and even
engaging in iterative self-play. Nevertheless, our group had a
good learning experience implementing both agents and ob-
serving the effects of their play.

References

[Ganzfried and Sandholm, 2012] Sam Ganzfried and Tuo-
mas Sandholm. Tartanian5: A heads-up no-limit texas
hold’em poker-playing program. Association for the Ad-
vancement of Artificial Intelligence, 2012.

[Johanson, 2007] Michael Bradley Johanson. Robust strate-
gies and counter-strategies: Building a champion level
computer poker player. University of Alberta Library,
2007.

[Martin Zinkevich and Piccione, 2007] Michael = Bowling
Martin Zinkevich, Michael Johanson and Carmelo Pic-
cione. Regret minimization in games with incomplete

information. Advances in Neural Information Processing
Systems 20, 2007.

[Nikolai Yakovenko and Fan, 2015] Colin Raffel Niko-
lai Yakovenko, Liangliang Cao and James Fan. Poker-cnn:
A pattern learning strategy for making draws and bets
in poker games. Association for the Advancement of
Artificial Intelligence, September 2015.

A States in Pre-Flop Street

AAp | AKs | AQs | Als | ATs | A9s | A8s | A7s [A6s | ASs [Ads | A3s | A2s
KAo | KKp | KQs | KJs | KTs | K9s | K8 | K7s | K6s | K5s | K4s | K3s | K2s
QAo | QKo | QQp | QJs | QTs | Q% | Q8 | Q7s | Q6s | Q55 | Q4s | Q3s | Q2s
JAo | JKo | JQo | IIp JTs J9s I8s J7s J6s JI5s Jas J3s J2s
TAo | TKo | TQo | TJo | TTp | T9s | T8s | T7s | T6s | T5s | Tds | T3s | T2s
9A0 | 9Ko | 9Qo | 9Jo | 9To | 99p | 98s 97s 96s | 955 | 94s 93s | 92s
8Ao | 8Ko | 8Qo | 8Jo | 8To | 890 | 88p | 87s 86s | 85s 84s 83s | 82s
7A0 | 7Ko | 7Qo | 7Jo | 7To | 790 | 780 | 77p | 76s | 75s 74s 73s | 72s
6A0 | 6Ko | 6Qo | 6Jo | 6To | 690 | 680 | 670 [66p | 655 [64s 63s | 62s
5A0 | 5Ko | 5Qo | 5Jo | 5To | 590 | 580 | 570 [560 | 55p | 54s 53s | 52s
4Ao | 4Ko | 4Qo | 4Jo | 4To | 490 | 480 | 470 | 460 | 450 | 44p | 43s | 42s
3A0 | 3Ko | 3Qo | 3Jo | 3To | 390 | 380 | 370 | 360 | 350 | 340 | 33p | 32s
2A0 | 2Ko | 2Qo | 2Jo | 2To | 290 | 280 | 270 | 260 | 250 | 240 | 230 | 22p

Figure 2: 169 pre-flop states with Card Isomorphism

The figure above shows the 169 pre-flop states when card
isomorphism is applied. p indicates a pair, s indicates a set of
suited hole cards and o indicates a set of offsuit holecards.

B Percentile Bucketing Results

Street | bl-b2 b2-b3 b3-b4 b4-b5
Pre-flop | 0.406 0.482 0.534 0.588
Flop 0.308 043 054 0.684
Turn 0.262 0412 0.562 0.736
River | 0.198 0.416 0.626 0.832

Table 1: Win rates used to demarcate bucket margins

In the pre-flop street, hands with a win rate of < 0.406
would be assigned to bucket 1. Hands with a win rate > 0.406
and < 0.482 would be assigned to bucket 2. In the river,
hands with a win rate < 0.198 would be assigned to bucket 1.

In the pre-flop stage, the bucket margins are close and the
difference in win rates of the first and last margin was only

0.182. Most cards in the pre-flop stage had a fairly similar
win rate because of the uncertainty in the community cards.
This difference increased to 0.634 in the river, when all the
community cards have been revealed. The only uncertainty
that remains is the opponent’s hands.

C Extensiveness of Game Tree for CFR Agent

This section attempts to calculate just how big the game tree
for a CFR agent with 5 buckets across each street would be.

At each chance node, we bucket the cards into one of 5
branches, so the branching factor is 5. With four streets (pre-
flop, flop, turn, river), there are four chance nodes. In total,
there would be 5* = 625 subtrees just from the bucketing
alone.

Between the chance nodes there are action nodes for play-
ers to alternately make actions. There are at most 15 layers
of actions across a round, 7 for calling (1 in pre-flop and 2
from the other streets) and 8 for raising (4 from each player).
A loose upper-bound would lead us to assign an approximate
branching factor of 2 to these action nodes, for calling and
raising. We ignore folding when considering the branching
of the game tree, as folding leads to a terminal node. A loose
estimation of the upper-bound of the number of action nodes
would be 215 = 32768 nodes.

In practice, our CFR agent generated 6.45 * 10° game
states, including the effect of chance nodes, action nodes and
predictions on the strength of the opponent’s hold cards.

D Characterising Player Strategies

We aim to let our CFR agent approximate a Nash Equilibrium
solution in the long term, regardless of the opponent’s strat-
egy. However, we first have to consider what a strategy is and
how we can formalise strategies. A simple way to charac-
terise player strategies is to consider betting behaviour when
the player has weak hands and strong hands.

When a player receives a weak hand, they could continue
playing or choose to fold. This behaviour can be defined on
a tightness-looseness scale. A tight player only plays a small
percentage of their hands, while a loose player would choose
to take risks and make bets based on the potential of the hand.
Loose play is called bluffing, and deceives the opponent into
over-estimating the agent’s hand strength and folding. The-
oretically, a tight play aims to reduce losses in the case of
weak hands. However, a very tight play would also mean
that the player keeps folding and the chances to observe the
opponent’s behaviour is diminished.

On the contrary, when a player receives a strong hand,
they could call or raise their bets. This behaviour can be de-
fined on a passiveness-aggressiveness scale. A passive player
keeps their bets low and stable, often calling. On the other
hand, an aggressive player actively makes raises to increase
the game stakes. Passive play, or slow-playing, is another
form of deceit which leads opponents to under-estimate the
hand strength, thereby continuing to place bets and raise the
pot amount. An aggressive play style hopes to maximise
the winnings when the hands are strong. However, an over-
aggressive play will also encourage opponents to fold, reduc-
ing the overall winnings.

The interaction with the opponent comes from the betting
actions and the showdown. However, not every game ends in
a showdown so using card information from the showdown
may not be as effective. Hence, our heuristics for player tight-
ness and aggressiveness is derived from the betting actions of
folding and raising.

Our agent incorporates these heuristics into its modelling
of the opponent by saving the opponent’s action history each
round. The betting sequence is a meaningful heuristic as it
encapsulates when players make certain decisions (e.g. call
then raise vs. raise then call), while being short enough to
track.

E Features Extracted for DQN

Extracted game features for DQN

street = round_state['street’']

hole_card_probability = self.card_pairs_prob[(hole_card[@], hole_card[1])]
community_cards = round_state['community_card']

pot_size = round_state['pot']['main’]['amount’]
player_stack =

[s['stack'] for s in round_state['seats'] if s['uuid'] == self.uuid][@]
opponent_stack =

[s['stack'] for s in round_state['seats'] if s['uuid'] != self.uuid]

dealer_btn = round_state['dealer_btn']
small_blind_pos = round_state['small_blind_pos']
big_blind_pos = round_state['big_blind_pos']
next_player = round_state['next_player']
round_count = round_state['round_count']

Figure 3: Game state features extracted for DQN

The image above shows the final features used in our DQN
agent. Some states do not seem to have any real effect on
performance, such as the dealer_btn. Nevertheless, we did
observe an improved performance including these states.

F Training DQN Agent with RandomPlayer
and HonestPlayer

Final Pot-Iteration

20000 —— Against honestplayer =

Against randomplayer
17500 A
15000 +

12500 A

10000

Final Pot

7500 4

5000 4

2500 4

T T T T
0 1000 2000 3000 4000 5000
Iteration

Figure 4: Performance of DQN Agent with training

At about 3000 training cycles, we could conclusively posit
that the DQN was defeating RandomPlayer and Honest-
Player. We extended the training to 5000 cycles, and we ob-
serve our DQN agent bankrupting both players.

It is interesting that HonestPlayer performed worse than
RandomPlayer. We hypothesised some reasons why this
could have occurred:

1. The machine we tested on (AWS) could not carry out
the Monte-Carlo calculations fast enough. HonestPlayer
ending up timing out and folding a large number of
times.

2. HonestPlayer had no form of deceit involved, so when-
ever HonestPlayer raised our DQN knew that their hands
were very strong and we should just fold. When Honest-
Player would win, they would only win a small amount
of money. On the contrary, RandomPlayer may have
folded good hands by chance but unintended bluffing
meant that RandomPlayer actually had a chance of win-
ning a significant amount from the pot.

G Tuning of DQN Hyperparameters

We tuned the training batch size, hidden layer size and learn-
ing rate of our DQN. Given our limited time, we could only
experiment with select combinations of parameters.

We followed intuitive combinations, increasing learning
rate as we increased the batch size. Our tuning process in-
volved the following sets of hyperparameters:

No. | Batch Size Hidden Layer Size Learning Rate
Ml 64 64 0.0001
M2 128 128 0.0001
M3 128 128 0.001
M4 128 256 0.001

Table 2: Tuning of DQN Hyperparameters

We let DQN agents trained with these parameters play with
each other over 10 games, and recorded the results below.

M1 M1 vs. M2
M2 | 132600 : 67360
M3 M3 vs. M4
M4 | 47420 : 152560

M1 vs. M4
69600 : 130340

Table 3: Results of Tuning DQN Hyperparameters

Given 5000 training cycles., the model with a batch size
of 128, hidden layer size of 256 and learning rate of 0.001
performed the best.

H Agent Implementations

Our implementation of the CFR and DQN agents, as
well as our training algorithms: https://github.com/
pikulet/poker.git

https://github.com/pikulet/poker.git
https://github.com/pikulet/poker.git

	Introduction
	Modelling Game State
	Hand Strength

	Counterfactual Regret Minimisation (CFR) Agent
	Regret Matching
	Randomising Strategy
	Approximate Nash Equilibrium
	Limitations of CFR Agent

	Training with a Deep-Q Network (DQN)
	Training Methodology
	Reinforcement Learning Process

	Conclusion
	States in Pre-Flop Street
	Percentile Bucketing Results
	Extensiveness of Game Tree for CFR Agent
	Characterising Player Strategies
	Features Extracted for DQN
	Training DQN Agent with RandomPlayer and HonestPlayer
	Tuning of DQN Hyperparameters
	Agent Implementations

