
Joyce Yeo Shuhui - Project Portfolio

PROJECT:

Overview
Concierge™ is a desktop hotel management application for receptionists to handle potential bookings and
current guests. The user interacts with it using a CLI, and it has a GUI created with JavaFX. It is written in Java,
and has about 10 kLoC.

Summary of contributions

 Access my contributed code here.

Major enhancement: added the ability to login/logout of the system.

What it does: Allows users to login to Concierge and access restricted commands which mutate the data.

Significance: With this feature, hotel managers can implement some level of access control. Some features
more commonly used (find , list) can still be accessed without signing in. By combining this with the
ability to export the command history, the auditing process for rogue commands is expedited.

Highlights:

The login/logout feature is dynamic - the users are not prompted to sign in upon starting Concierge, and
users can logout and log back in within the same session. This means that there is a very close integration
with the existing commands to verify the sign-in status and whether the commands require signing-in.

This feature is complete - I worked with the different architectural components of Concierge, from
command parsing (Logic) to login verification (Model) and even password storage (Storage).

The feature attempts to achieve some level of security with SHA-256 hashing.

Credits: The password hash algorithm was taken from Baeldung.

These features were mainly achieved in #168 and #226.

Minor enhancements/ code contributed:

Renamed the existing classes and methods from Person to Guest

https://github.com/CS2103-AY1819S1-F11-2/main
https://nus-cs2103-ay1819s1.github.io/cs2103-dashboard/#=undefined&search=pikulet
https://www.baeldung.com/sha-256-hashing-java
https://github.com/CS2103-AY1819S1-F11-2/main/pull/168
https://github.com/CS2103-AY1819S1-F11-2/main/pull/226
https://github.com/CS2103-AY1819S1-F11-2/main/pull/133

Removed Address as a field in Person , removed the edit and delete commands

Modified the add command to take in room and date details. Room and Booking package by others.

Modified the clear command to maintain empty hotel rooms

Added function for GUI verification of rooms

Added most of the Appendices in the Developer Guide

Project Management:

Managed the team’s issue tracker

Encouraged team to use clean PRs, TODO and Codacy

Set up RepoSense for the team

Community

PRs reviewed (with non-trivial review comments): #157, #71, #156, #111, #100, #222, #219

Reported bugs and suggestions for other teams in the class

Discovered impersistence in data, discovered hidden bug by rearranging command, made suggestion
on bounds checking

Contributions to the User Guide

My contributions to the User Guide below showcase my ability to write documentation targeting end-users.

Adding a booking: add

Adds a booking associated with a guest, room and booking period.
Format: add n/NAME p/PHONE_NUMBER e/EMAIL [t/TAG] r/ROOM_NUMBER from/START_DATE
to/END_DATE

A valid booking cannot clash with an existing booking. It must also have a start date from
today onwards (i.e. not outdated).

A guest can have any number of tags (including 0)

A guest can make an unlimited number of bookings with the hotel.

When adding a booking, the guest will not be added to the archived guest list or checked-in guest list.
Their personal information will be stored under their booking in the room.

https://github.com/CS2103-AY1819S1-F11-2/main/pull/143
https://github.com/CS2103-AY1819S1-F11-2/main/pull/233
https://github.com/CS2103-AY1819S1-F11-2/main/pull/139
https://github.com/CS2103-AY1819S1-F11-2/main/pull/104
https://github.com/CS2103-AY1819S1-F11-2/main/pull/162
https://github.com/CS2103-AY1819S1-F11-2/main/pull/162
https://github.com/CS2103-AY1819S1-F11-2/main/pull/42
https://github.com/CS2103-AY1819S1-F11-2/main/pull/159
https://github.com/CS2103-AY1819S1-F11-2/main/pull/157
https://github.com/CS2103-AY1819S1-F11-2/main/pull/71
https://github.com/CS2103-AY1819S1-F11-2/main/pull/156
https://github.com/CS2103-AY1819S1-F11-2/main/pull/111
https://github.com/CS2103-AY1819S1-F11-2/main/pull/100
https://github.com/CS2103-AY1819S1-F11-2/main/pull/222
https://github.com/CS2103-AY1819S1-F11-2/main/pull/219
https://github.com/CS2103-AY1819S1-W14-3/main/issues/161
https://github.com/CS2103-AY1819S1-W14-3/main/issues/148
https://github.com/CS2103-AY1819S1-W14-3/main/issues/157

Example: add n/John Smith p/98765432 e/johnsmith@gmail.com t/VIP r/085 from/17/12/18
to/19/12/18

Add a guest "John Smith" to room 085 for the period of stay from 17/12/18 to 19/12/18.

Adding an inactive booking: you can view the booking by selecting the relevant room, under "All other
bookings". Only active bookings (i.e. start date is today) can be seen on the left room pane.

Login : login

Logs in to the Concierge™ application.
Format: login user/USERNAME pw/PASSWORD

Note: The username and password are both case-sensitive.

 The default account can be accessed with login user/admin pw/passw0rd

A login allows the user to access the commands which can affect the bookings.
Commands which require login: add , checkin , checkout , reassign , service and clear .

Example: login user/admin pw/passw0rd

clear
"This command requires you to sign in."
Attempting to clear Concierge™ without a login is not allowed.

login user/admin pw/passw0rd
"Successfully signed in as: admin"
Login with a valid account, such as the default one provided.

After signing in, the clear command can now be executed.

Adding a new account

Currently, Concierge(TM) does not have a feature for users to add an account via the app.
Nevertheless, for the adventurous users who want to do so, this sub-section will be useful.

Step 1: Concierge™ uses SHA-256 password hashing. This hash for your password can be generated using this
tool.

 Concierge™ is designed to work for alphanumeric usernames and passwords in mind. Do not
enter symbols (!, @, %…). Do not begin or end your passwords with whitespaces.

Step 2: Add the entry to the passwords.json file. This should be in the same location as concierge.jar .
Note that entries are separated with a comma.
Format: "username" : "hashedPassword"

In the image below, a new account with username "newUser" and password "mySecurePassw0rd" has been
added.

Step 3: Close and reload the Concierge™ application, and your new account will be recognised.

The parsing of the passwords.json file is delicate. Currently, if you enter a valid json file
format but an incorrect password reference list format, you will end up with no default
account. To resolve this, delete the passwords.json file and re-run Concierge™.

Logout : logout

Logs out of the Concierge™ application.
Format: logout

The special classes of commands (as documented in login) can no longer be executed.

https://passwordsgenerator.net/sha256-hash-generator/

The logout command will erase the command history, so users cannot undo/ redo commands executed
before the logout.

Even if you login again, you cannot undo your previous actions.

This achieves the same effect as closing and re-opening Concierge™ after a logout.

Example: logout

Contributions to the Developer Guide

My contributions to the Developer Guide below showcase my ability to write technical documentation and
the technical depth of my contributions to the project.

Adding a Booking
The add command is used by the receptionist to add the guest to the hotel, and assign him a room.

Current Implementation

We currently accept a Guest , RoomNumber and BookingPeriod as parameters for the AddCommand
constructor. An example of its usage: add n/Madith p/83141592 e/madith@themyth.com r/041
from/29/11/2018 to/ 03/12/2018

The parsing of the AddCommand is very similar to what was already implemented in AddressBook4. More
parameters were added, namely the RoomNumber and BookingPeriod . These are parsed to create the
respective objects - Guest , RoomNumber and BookingPeriod .

In v2.0, users can enter a start date and duration to specify their booking period.

As in AddressBook4, the Logic component parses the AddCommand , and the Model handles its execution.

In the Model , the Guest is no longer added to Concierge. It was previously the case in AddressBook4.

A new Booking object is created with the Guest and BookingPeriod as its parameters.

This Booking is then added to the Room with the RoomNumber specified. Every Room maintains a
SortedSet<Booking> which is encapsulated in the Bookings (plural) class.

An Activity Diagram for the execution of AddCommand#execute is shown below.

The AddCommandParser already checks that ROOM_NUMBER is a valid string from 001 to
100 , and the initialisation of Concierge checks that there are 100 rooms. The
RoomNotFoundException is not expected to occur for any user input, but is left there as a
defensive measure.

Design Considerations

Aspect: Check for outdated bookings

Outdated bookings are those which have a start date before today. Concierge disallows users to add outdated
bookings.

Alternative 1 (current choice): Do the check in AddCommand#execute

Pros: Very easy to implement. A parameter check in the execute method will suffice. Will only affect
the AddCommandSystemTest .

Cons: The actual Model#addBooking does not do any check on the BookingPeriod being outdated,
opening the possibly of outdated Booking s being added from via other commands.

Alternative 2: Do the check in Room#addBooking

Pros: Centralises exceptions thrown related to bookings in the Booking class. Increases the
cohesiveness of this class.

Cons: All the existing tests and sample data calling the addBooking method with outdated bookings
have to be changed. It also becomes difficult to do unit tests on checking in bookings which are outdated
but not expired, since these bookings can no longer be added to the model.

Aspect: Reduce coupling between Room and Guest

Semantically, we can observe a strong coupling and dependency between Room and Guest . A Room contains
a Guest , and a Guest also has a Room . Maintaining this coupling allows for very quick lookup both ways,
either given a Guest (which is common at the reception desk) or given a Room (which is common for

housekeeping).

Alternative 1 (current choice): Add Guest as a field in Room

Pros: An efficient way for managing bookings. Receptionist can quickly determine if the Room is free to
book. Lookup time for Guest not expected to increase greatly, since Room s are not expected to have a
large number of advanced bookings made.

Cons: Difficult to find the Room given the Guest . When a Guest has made an advanced booking and
wishes to cancel it, we have to search through all the Room s. Nevertheless, we expect most guests to be
aware of their rooms.

Alternative 2: Add Room as a field in Guest

Pros: Very customer-centric design. Centralises all the information about the Guest , including
Booking s made and Expense s incurred.

Cons: Making a new Booking with a Guest is highly inefficient. Booking information is now
scattered across individual Guest s.

[v1.4] On top of the list of rooms, we maintain a separate list of checked-in guests. This list does not
retain any booking information, as it is meant to for a quick lookup of the guests' particulars.

Login and Logout
The login feature allows hotel managers to control which receptionists have full access to Concierge. When
paired with the CommandArchive feature, they can also create a blame history to trace rogue commands.

Current Implementation

Currently, login is implemented as a dynamic feature, so users are not prompted to sign in upon starting
Concierge. Instead, they only have to sign in when executing commands which would mutate the data, such as
add , checkin , checkout , reassign , service and clear .

Logic

Given the nature of the login command being dynamic (can be entered at any point in time, between any
commands), it is then natural to implement it like a normal command, extending the abstract Command class.
The logout command is also implemented in this way.

Model

The model handles the signing-in, using its attribute LogInManager . The Class Diagram of the login module is
shown below.

LogInManager uses an optional username to keep track of whether the user is currently signed in. The
passwordReferenceList provides an immutable key-value lookup for usernames and passwords.

LogInManager implements the following operations.

LogInManager#isSignedIn() - checks if the user is currently signed in.

LogInManager#signIn(String, String) - attempts to sign in with the given username and hashed
password. This is handled by the PasswordHashList . A case-insensitive comparison is used on the hash.

LogInManager#signOut() - signs out of Concierge.

A new method resetUndoRedoHistory was added to the VersionedConcierge (used for the Undo/ Redo
feature). This is used to clear the command history upon a logout command, so users cannot undo important
commands or redo accidental bad commands after signing out.

Login

Shown below is the Sequence Diagram for executing a valid login command. The diagram also illustrates
how the LogicManager checks for the sign-in requirement of commands.

Storage

The passwords.json file is read when Concierge is first opened (i.e. in MainApp#init), and is never
written to again. The storage function is managed by the JsonPasswordsStorage class. Intuitively, passwords
are stored as key-value pairs for quick look-up.

A SHA-256 hash was used in building this feature. In future, this hashing algorithm can be changed to a HMAC
hash, which adds a username salt. Then, different users will not know if they have chosen the same passwords.

Check for sign-in requirement of commands

LogicManager does the checks for whether a command requires a sign in, and whether the model is signed in.

The Command class exposes a new requiresSignIn() method that returns false by default. To make new
command require signing-in, one only has to overwrite this method in that command.

Design Considerations

Aspect: Accessing features of Concierge with/ without login

Alternative 1 (current choice): Login is needed only for some features

Pros: Manager can implement some level of access control within Concierge, especially since some of the
more commonly used Concierge features (list , find) are read-only features. This is quicker than
mandating a sign-in at the start and creating different user views based on the account privilege (admin vs
normal).

Cons: Not very intuitive to users. They have to enter commands before being told they need to sign in.
The requiresSignIn() check takes place after the parsing of the command, so a user can is told they
cannot execute the command without a sign-in after their command is parsed correctly.

Alternative 2: Login is needed for all features

Pros: Very easy to check login validity. This only occurs when Concierge is first loaded. Subsequent
commands can be executed without additional checks on the sign-in requirement.

Aspect: Check for sign-in requirement of commands

Given that sign-in is only required for some commands, the priority in designing this aspect is the ability to
easily mandate/ disable compulsory the login requirement for current and future commands.

Alternative 1 (current choice): Do the check in LogInManager#execute

Pros: Ensures that commands are checked before any execution. Users will not inadvertently change the
model before doing the sign-in checks.

Cons: Unable to implement commands that can do some actions without sign-in. For example, a future
developer may want to make the add command such that when the user is not signed-in, the booking is
still added but a tag is added to the Guest , reminding the manager to verify the booking.

Violates the Single Responsibility Principle. The job of LogicManager is to parse and execute
commands.

Alternative 2: Do the check in Command#execute

Pros: Increases cohesiveness of Command class. The compulsory sign-in is an attribute of a Command , so
these checks can be done internally. Command can implement a method checkSignIn(Model) , and
commands which require sign-ins can call this method in their respective execute methods.

Cons: While increasing cohesion, this implementation makes less semantic sense. The logical misstep
comes because one is executing the method, then checking if the method can be executed, then
"reversing" the execution.

Aspect: Storage of Passwords

The password file is currently read at MainApp#init , and saved once. Unlike the Concierge data, this file is no
longer referred to when Concierge is in use.

Alternative 1 (current choice): Store passwords in JSON file

Pros: JSON is very easy to work with.

Able to utilise existing JsonUtil methods used by the UserPrefs and Config classes.

Easily parse data into key-value pairs, which semantically matches our needs.

Cons: JsonUtil file is not completely suitable for a data type that has potentially an unlimited number
of entries, since this utility serialises the data to match the class attributes.

Alternative 2: Store passwords in same XML file as all other Concierge data

Pros: Centralises data storage in Concierge. There is only one single source of truth for all data.

Cons: The XML file is too complicated for the needs of password storage.

Concierge does not need to write the the passwords file when in use. concierge.xml is constantly
being written to, which is an unnecessary and possibly unsafe feature for the passwords component.

Creating a new password entry is difficult since once has to add all the layers of XML tags involved.
Nevertheless, users are not expected to be adding new accounts on a regular basis.

End Note
I am grateful to have had the opportunity to work on this project with amazing team members who each
contributed with their own strengths. Thank you, @adamwth @teowz46 @JiaqingTan @neilish3re.

Last updated 2018-11-12 23:32:44 SGT

